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Abstract. The existence of the thermodynamic limit for the spectrum of the Lyapunov 
characteristic exponents is numerically investigated for the Fermi-Pasta-Ulam p model. 
We show that the shape of the spectrum for energy density well above the equipartition 
threshold E, allows the Kolmogorov-Sinai entropy to be expressed simply in terms of the 
maximum exponent I,,,. The presence of a power-law behaviour E @  is investigated. The 
analogies with similar results obtained from the dynamics of symplectic random matrices 
seem to indicate the possibility of interpreting chaotic dynamics in terms of some 'universal' 
properties. 

1. Introduction 

The existence of a thermodynamic limit for the statistical properties of a generic 
dynamical system is an interesting open problem (Ruelle 1978). Even more difficult, 
from an analytical point of view, is the problem of how fast this limit is reached and, 
eventually, the computation of corrections. 

For Hamiltonian systems there exists (on the basis of a series of numerical experi- 
ments (Benettin er a1 1980b, Livi er al 1985)) the suspicion that some asymptotic 
behaviours are already obtained with a small number of degrees of freedom N. For 
instance the stochasticity and the equipartition thresholds in the energy density E 

appear to converge already for N - 20-40. 
Recently Ruelle (1982) has discussed the possible existence of a large volume limit 

of the distribution of characteristic exponents in conservative and dissipative dynamical 
systems, and obtained simple scaling laws for an intermittent model of turbulence 
(Frisch er al 1978). The possible existence of a limit of a quantity whose definition is 
close to that of maximum characteristic exponent as N + o;, has already been proposed 
by Casartelli er a1 (1976) on the basis of numerical results. Moreover some numerical 
computations on the one-dimensional equation of Kuramoto-Sivashinsky (Pomeau er 
a1 1984, Manneville 1983) show that a limiting distribution in a dissipative case is 
reached for -50-100 degrees of freedom. 

The numerical meaCurement of the Lyapunov spectrum (LS) for a Hamiltonian 
system is of extreme importance, not only to control the thermodynamic limit, but also 
because of Pesin's relation which connects the distribution of exponents to the Kol- 
mogorov-Sinai (KS) entropy and, therefore, to the rate of production of information 
(Pesin 1976). We have chosen to measure the distribution of exponents for the 
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Fermi-Pasta-Ulam (FPU) P model (Fermi et a1 1955), where a quite precise determina- 
tion of the equipartition energy threshold E ,  is known (Livi et a1 1985). Above the 
threshold the whole phase space, except for a set of 0 measure, is connected and the 
exponents do not depend on the initial position in the phase space, thus simplifying 
the application of Pesin’s relation. We obtain a limit distribution for N - 40-80 which 
turns out to be a straight line for large values of the energy density. As a consequence, 
ic this region, the KS entropy is proportional to the maximum Lyapunov exponent 
A,,,, to be intended as the starting point of the distribution in the thermodynamic 
limit. The onset of a power-law behaviour of the maximum exponent near the threshold 
(where the distribution is no more a straight line) is finally observed in analogy with 
the results of Rechester et a1 (1979) and Benettin (1984) on low-dimensional systems. 
Similar results have been obtained on symplectic random matrices by Paladin and 
Vulpiani (1986). 

Computations have been performed partly on a Cray-1 computer and partly on a 
VAX-11/780 computer with 16 digit precision. 

In 0 2 the FPU /3 model is introduced and its statistical and dynamical properties 
are discussed. In § 3 the definition of distribution of characteristic exponents is given 
and the numerical results are proposed. Section 4 is devoted to conclusions and 
perspectives. 

2. The Fermi-Pasta-Ulam /3 model 

The model represents the dynamics of a chain of N non-linearly coupled oscillators. 
Its Hamiltonian is 

where the {x,} are the displacements with respect to equilibrium positions and the { p r }  
are the corresponding conjugate momenta. In the case of the FPU Pmodel the non-linear 
interaction potential is given, suitably scaling positions and momenta, by 

V(5) = At4. (2.2) 
The Hamilton equations are therefore 

XL =PI 
Eiz = ~ ~ , + 1 - ~ ~ 1 + ~ , - 1 ~ + ~ ~ ~ ~ , + 1 - ~ 1 ~ 3 - ~ ~ 1 - ~ ~ - 1 ~ 3 1 ~  F({xJ). (2.3) 

We always fix periodic boundary conditions x1 = xN+I while the initial conditions are 
randomly chosen with the constraint Zlpn(0) = 0, in order to avoid systematic growth 
of spatial variables. 

The numerical integration has been performed by means of the Verlet (leap-frog) 
algorithm (Verlet 1967) which preserves the symplectic structure of the Hamiltonian 
flow, giving a good stability at long times 

x,(t + A t )  = x,( t )  +pl(  t )  

pI( t + A t )  = p z  ( t )  + At2F({xl ( t + At)}) .  
(2.4) 

A t  is chosen in the range 0.01-0.05 in order to guarantee a conservation of energy of 
the order of 0.1%. The dependence of the results on the chosen time step has always 
been kept under control. 
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At large energy densities E ( E  = E /  N) this model is known to exhibit equipartition 
of the energy among the degrees of freedom. Livi et a1 (1985) introduced an indicator 
in the Fourier space, the spectral entropy, which clearly reveals the existence of a 
threshold at E = E,= 0.1 with the present scale. In the equipartiton region the phase 
space is likely to be connected: this is confirmed by some measurements performed 
for different initial conditions at the same energy density. 

The trajectories are chaotic and all the Lyapunov exponents are different from zero 
(apart from the four which are zero due to energy and momentum conservation, see 
0 3), even if long relaxation times of mean values and characteristic exponents are still 
observed. Below the critical value E,, the Lyapunov exponents in general depend on 
the initial conditions and intriguing ‘branching phenomena’ can occur. Thus we do 
not enter this region where a LS is not unequivocally defined. 

3. Lyapunov exponents distribution: numerical results 

The Lyapunov characteristic exponents naturally derive from the extension of the 
linear stability analysis to aperiodic motion. As is well known, they measure the 
average exponential divergence from a given trajectory when the initial condition is 
perturbed with respect to preassigned directions. For a dynamical system characterised 
by 2 N  degrees of freedom one can define 

1 
A(e ,  N )  = lim - lnll L,eII 

r-m t (3.1) 

where L, is the linear mapping associated with the flow, 1 1  I /  represents the Euclidean 
norm in OXZN and e is a generic vector in the tangent space. The dependence of A on 
the initial condition has, instead, been neglected, since we are interested here in 
analysing the region above the equipartition threshold of the model (2.1). 

It can be easily proven that, when e is varied, h ( e ,  N) takes 2 N  different values 
A,(  N) > A*( N) > . . . > hZN( N) ,  which constitute the so-called LS. The very definition 
of LS is, however, impractical for numerical applications because almost any choice 
of e would yield the same limit value Al(N). 

A different approach (see Benettin et a1 1980a), based on the expansion rates of 
p-dimensional subspaces 

1 
1-+m t xp  = lim - lnll L,e, A Lre2 A . . . 

has to be applied, where ( e , ,  e2, . . . , e p )  represents a basis of a p-dimensional subspace. 
Indeed it has been proven (Benettin et al 1980a, b) that 

This provides a basis for defining a numerical algorithm. In fact one can randomly 
choose an orthonormal basis in the tangent space and let it evolve in time. The 
Gram-Schmidt orthogonalisation procedure can then be applied at fixed time intervals. 
This simultaneously allows the evaluation of the partial expansion rates and avoids 
the angles among the vectors L,ei becoming too small. 
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The existence of a finite thermodynamic limit for the LS simply means that the 
quantity h,,(N)= A(a, N )  is independent of N for large N (and N /  V constant, 
where V is the volume occupied by the dynamical system) and an asymptotic spectrum 
x ( a )  can be defined 

X ( a ) =  lim ,+(a, N ) .  
N-CC 

In particular, by this definition, the value x(0) will correspond to the maximum 
Lyapunov characteristic exponent, and, from here on, will be indicated by imaX. 

As far as Hamiltonian systems are concerned it can be proven that, as a consequence 
of their symplectic structure, Lyapunov exponents exist in pairs with opposite values 
( A ,  = -A Z N + , - r ) .  Moreover one has as many null Lyapunov characteristic exponents 
as the double of the constants of motion in involution. Anyway, the interest in studying 
the LS of a Hamiltonian system like (2 .1)  comes from Pesin's theorem, which connects 
A ( a ,  N )  with the Kolmogorov-Sinai entropy h (i.e. the rate of creation of information) 
of the system; in formulae 

N 
h ( N ) =  i = l  A(; ,N) .  (3.4) 

As a consequence of (3.4), we shall limit ourselves to analysing the positive part of 
the LS (PLS). 

Let us observe that, due to the periodic boundary conditions, there exists a second 
integral of motion (momentum) besides energy, thus leading to two null exponents in 
the PLS. 

Now we want to investigate numerically the existence of the thermodynamic limit 
for the PLS of the FPU /3 model defined in (2.1) and then, if this is the case, obtain an 
estimate for h ( N ) .  

For this purpose we have varied N at fixed E ;  in figure 1 we have reported the PLS 
for E = 26.4. Such energy density E is much greater than the critical value E,  so that 
the A ( a ,  N )  are sufficiently high for almost any a to obtain a fast convergence to their 
asymptotic values. This limited the integration times of the equations of motion below 
t - io4. 

First of all let us observe that the numerical results show the evidence of a limit 
distribution as N increases: the thermodynamic limit is practically reached for N -  
20-40. 

0 1  
I 0.2 0.4 0.6 0 .8  1.0 

i l N  

Figure 1. A ( i / N ,  N) plotted against i / N  for different values of N (0, 5 ;  A ,  10; x ,  20; 
0, 40; A, 80) and E =26.4. 
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Moreover, as a verification of the correctness of our results, in all the PLS that we 
have reported, the exponents A N  and AN- ,  are zero as we expected. But, 
what one could not a priori expect is that the shape of_the asymptotic (read thermo- 
dynamic limit) PLS is linear in a wide range, except near A,,,, where it tends to enhance. 
To clarify this point we have performed further numerical analysis varying E, and 
pointing our attention to the distribution close to x,,,. Figure 2 shows the interesting 
part of the PLS for E = 3.58 and N = 40 and 80. Again in this case the two distributions 
overlap in the intermediate linear region, while some small deviation is observed around 
CY = O .  This behaviour suggests that as E is lowered, the convergence to the thermo- 
dynamic limit is slower, at least in the i,,, region. Anyway, no major change in the 
shape of the distribution is observed. To obtain a clearer understanding of the approach 
to the thermodynamic limit of the PLS we have studied how A(a, N )  varies with N, 
for fixed a. Once the energy density is chosen E = 1, the exponent A(0.05, N )  has been 
evaluated for chains composed of N = 20, 40, 80 and 160 particles (see figure 3). 
Although the poor statistics (due to unfeasibility of measurements at larger values of 
N )  one can conclude that the convergence is not monotonic, and one cannot exclude 
an oscillating behaviour around the asymptotic value which we interpret as the value 
of x(0.05) in the thermodynamic limit. Now let us discuss an interesting consequence 
of the straight line behaviour of the asymptotic PLS for sufficiently high energy densities. 

X .  

' >  

1 
1 I0 114 318 112 

/ I N  

Figure 2. The upper part of the PLS for N = 40 (O) ,  80 ( X )  and E = 3.58. 

0 
0 

0 

1 r I 1 

20 40 80 160 
N 

Figure 3. A(0.05, N) plotted against N for E = 1. 
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The linearity of X(a) simply means that for large N the density p ( x )  of characteristic 
exponents in the interval (1, X+dX) is constant, namely 

p ( i )  = CN i < X,,, 
where C is independent not only of 1 but also of N, due to the existence 
thermodynamic limit. Now from the definition of p ( 1 )  one obtains the relation 

Lax 
N = Io p ( i )  dX = CNX,,, 

yielding - c = l / A m a x .  

(3.5) 

of a 

(3.6) 

(3.7) 

This allows us to obtain by a straightforward calculation (see equation (3.4)) the h of 
the system as a function of I,,, only: 

This relation provides a recipe to obtain, at fixed E ,  a numerical estimate of the entropy 
density of the FPU p model in the thermodynamic limit, simply extrapolating the 
distribution obtained for a sufficiently high value of N to determine Amax. For low E 

this recipe instead provides only an upper bound of this quantity, because, as we have 
shown, the distribution tends to enhance around a = O .  Anyway, the existence of a 
finite limit of I,,, is still well verified for E = 1 since the estimate of I,,, obtained by 
a fit of the PLS turned out to be stable for increasing N: figure 4 in fact shows that 
A(1/320,320) falls on the fit of the limit PLS obtained for N = 80 and 160. 

It is also relevant to study how I,,, scales with E.  To this end we have chosen 
N = 80 (this guarantees obtaining the limit PLS in the chosen range of energy densities) 
and we have fitted the distribution of the first five exponents with the function 

(3.9) 

which seems to be sufficiently accurate in describing the PLS near a = 0. Figure 5 shows 
that for high values of E the dependence tends to weaken, while for small E the onset 

i ( a )  = a / ( b  + a )  

0 

0 

1 / 2 0  1/10 3120 1 1 5  
/ I N  

I 

Figure4. The upper part of the PLS for the different N (C, 20; f ,  40; 0,  80; x ,  160; A, 
320) and E = 1. The broken curve represents the fit obtained by (3.9) for N = 160. 
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In  E 

Figure 5. In A,,, as a function of In E for N = 80. The broken curve has been drawn to 
guide the eyes to the power-law behaviour. 

of a power-law behaviour i,,, - E’ can be reasonably assumed, with p = 0.78. Even 
if it is extremely hard to investigate in more detail the small E region because of 
computer time limitations, it is however interesting to underline the analogies with the 
results of Benettin (1984) and Rechester et a1 (1979) who found p =; and $ in 
low-dimensional systems. 

Finally it is worthwhile noticing the monotonously decreasing behaviour of the 
parameter b when the energy E is decreased. This indeed confirms the previously 
sketched tendency of x ( a )  to squeeze against the A axis for small E values. A 
quantitative analysis is however quite involved in the absence of any analytic ansatz 
on the behaviour of i ( a )  for small a. 

4. Conclusions 

The major result of the present paper concerns the existence of the thermodynamic 
limit for the LS with a special reference to the finiteness of i,,,. Indeed, it is not at 
all a priori obvious that the growth of degrees of freedom does not lead to a constantly 
increasing A,,,. At variance with this naive picture, it must be registered that the 
average exponential divergence of nearby trajectories is independent of N in the limit 
of large N(-40). 

Moreover the seemingly power-law behaviour of i,,, against E suggests, recalling 
the existence of an equipartition as well as of a stochasticity threshold, the presence 
of an underlying structure similar to that of phase transitions. 

Finally, a few words on the comparison of our results with those obtained by 
multiplying N-dimensional random symplectic matrices (Paladin and Vulpiani 1986). 
The straight line behaviour of the LS means that the generating dynamics is not relevant 
for determining the distribution of characteristic exponents. Only a few still hidden 
parameters could play a relevant role. We are investigating the latter problem. 

After the completion of this paper we were informed by C M Newman that he had 
obtained an asymptotically uniform distribution of Lyapunov exponents for a con- 
tinuous-time linear stochastic model (Newman 1986). In view of the results on random 
symplectic matrices by Paladin and Vulpiani (1986) and on some preliminary results 
on symplectic maps we think that the existence of an asymptotic distribution and the 
fact that it is uniform in some region of the parameters (e.g. at large energy densities 
for the FPU model) is more than a coincidence. 
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